Inhibition of etoposide-induced DNA damage and cytotoxicity in L1210 cells by dehydrogenase inhibitors and other agents.
نویسندگان
چکیده
The mechanism of action of 4'-demethylepipodophyllotoxin-9-(4,6-O-ethylidene-beta-D-glucopyra noside) (VP-16), an important antitumor agent, is unclear. There is evidence that DNA may be the target of action because VP-16 causes single-strand and double-strand breaks in DNA and produces cytotoxicity over a similar dose range. We have hypothesized that an enzyme system, such as dehydrogenase, catalyzes an oxidation-reduction reaction involving the pendant phenolic group which forms an active metabolite that causes the DNA damage and cytotoxicity. To test our hypothesis, we investigated the effect of disulfiram, an aldehyde dehydrogenase inhibitor, and its metabolite, diethyldithiocarbamate, on VP-16-induced DNA damage in L1210 cells. Using the alkaline elution technique to assay DNA damage, we found that disulfiram and diethyldithiocerbamate inhibited VP-16-induced single-strand breaks. Both compounds were also capable of significantly reducing VP-16-induced cytotoxicity. Oxalic acid, pyrophosphate, and malonic acid, competitive inhibitors of succinate dehydrogenase, and the naturally occurring dehydrogenase substrates, succinic acid, beta-glycerophosphate, and isocitric acid, also blocked the effects of VP-16. Free-radical scavengers were also studied. While sodium benzoate was particularly effective in preventing drug-induced DNA damage and cytotoxicity, a number of other scavengers were not. Our data are consistent with the hypothesis that VP-16 is activated by an enzyme such as a dehydrogenase which transforms it into an active intermediate resulting in DNA damage and, consequently, cell death.
منابع مشابه
Lidocaine potentiation of bleomycin A2 cytotoxicity and DNA strand breakage in L1210 and human A-253 cells.
The survival of cultured L1210 cells exposed to bleomycin A2 (BLM A2) was markedly decreased by coincubation with the local anesthetic lidocaine. The potentiation occurred with concentrations of lidocaine that were nontoxic and was dependent upon both the concentration of lidocaine and BLM A2. A 1000-fold decrease in survival was seen with a 1-h exposure to 8 mM lidocaine and 10 microM BLM A2 c...
متن کاملElevation of cAMP Levels Inhibits Doxorubicin-Induced Apoptosis in Pre- B ALL NALM- 6 Cells Through Induction of BAD Phosphorylation and Inhibition of P53 Accumulation
Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-trea...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced by Dacarbazine and It’s Pyridine Derivative in Hepatocytes
Dacarbazine (DTIC) is a synthetic chemical antitumor agent which is used to treat malignant melanoma and Hodgkin’s disease. DTIC is a prodrug which is converted to an active form undergoing demethylation by liver enzymes. The active form prevents the progress of disease via alkylation of DNA strand. In the structure of this drug, the imidazole ring, a triazen chain and carboxamide group ex...
متن کاملProtection from adriamycin cytotoxicity in L1210 cells by brefeldin A.
We present studies which suggest that the cytotoxic action of Adriamycin (ADR) may involve intracellular pathways of vesicular transport. The movement of proteins or lipids from the endoplasmic reticulum to the plasma membrane via the Golgi organelle and associated compartments exhibits several temperature-sensitive steps between 15 degrees C and 20 degrees C. In this same temperature range, AD...
متن کاملPotentiation of etoposide-induced DNA damage by calcium antagonists in L1210 cells in vitro.
Verapamil and a number of other Ca2+ antagonists were found to potentiate DNA damage induced by 4'-demethylepipodophyllotoxin-9-(4,6-O-ethylidene-beta-D-glucop yra noside (VP-16) in L1210 cells in vitro. The potentiating effect of verapamil on DNA single-strand breaks in vitro was concentration dependent, relevant to clinically achieved levels of Ca2+ antagonists, and showed good correlation wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 44 2 شماره
صفحات -
تاریخ انتشار 1984